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Abstract 

Katie M. Miller 

THE SIGNIFICANCE OFAN ENHANCED FINE-SCALE HYDRAULIC MODEL 

INCLUDING GREEN INFRASTRUCTURE FOR COMMUNITY RESILIENCY 

2016-2017 

Dr. Rouzbeh Nazari 

Master of Science in Civil Engineering 

 

 This paper outlines the development of an enhanced hydraulic flood model that 

uses a fine-scale grid to analyze significant areas of flooding for improved flood predictions 

and resiliency planning. This study modeled the extent of Atlantic City and Camden, New 

Jersey. The capabilities of the model were compared to coarser national models, HAZUS-

MH and SLOSH, to understand the significance of fine-scale hydraulic modeling. The 

results illustrated that the HAZUS and SLOSH models showed gaps in some areas and 

lacked accuracy due to lower resolution. This paper also describes how these developed 

models show the impacts of severe storms, and the effects of Green Infrastructure (GI) 

implementation as resiliency methods using SWMM. Overall, the models with GI show a 

decrease of peak runoff and decreased flow due to the GI implementation. The results and 

benefits from this study’s simulation and modeling techniques support modeling storms 

using high-resolution hydraulic programs due to their precision. This research will allow 

coastal community members to understand the significance of fine-scale flood modeling 

and green infrastructure implementation with more advanced techniques in the future for 

resiliency planning.  
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Chapter 1 

Introduction 

1.1 Statement of the Problem 

The rising levels of the ocean and the potential increase in storm and hurricane 

frequency due to climate change are putting coastal and riverine communities of New 

Jersey in danger. There is an immense amount of inundation that vulnerable communities 

receive during a storm event; therefore a plan of resilience against the destruction is highly 

necessary. The bayside along New Jersey’s barrier island communities is one of the nine 

high-risk areas for flooding along the Atlantic Coast according to the U.S. Army Corps of 

Engineers (Degener, R. 2015). It was also indicated that the sea level may rise 

approximately 1.5 meters by 2100 in Atlantic City (Degener, R. 2015).  This high risk for 

Atlantic City creates the need for adaptive measures to be implemented to reduce the 

community’s vulnerability to extreme storm events and increase resilience in response to 

such threats. 

Camden, New Jersey, along the Delaware River, is a highly threatened community 

as well. Camden is an urban community, with a combined sewer system and poor water 

management services that overflow continuously during a storm (Van Abs, Daniel J. 2014). 

Climate Central has projected a 1.28 meter rise above the local high tide line locally near 

Camden by 2100, from a 1992 baseline (Climate Central, 2016). The probability of the 

surrounding communities to be washed-out the next time a heavy storm presents itself is 

high, and advanced protective tactics need to be acknowledged. 
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1.2 Scope of Study 

1. Develop a fine-scale hydrologic and hydraulic flood model to simulate past flooding 

events in subjected areas. 

2. Compare the fine-scale model to currently used national models that are coarser in 

resolution, to show the significance of fine-scale modeling for such climatic problems. 

3. Analyze a simple resiliency method of levee implementation along the study areas of 

Atlantic City. 

4. Simulate the existing urban drainage system in a Camden neighborhood to illustrate the 

benefits of green infrastructure as a resiliency method against flooding. 

 

1.3 Study Objectives 

The focus of this study was to illustrate the benefits of fine-scale hydraulic 

modeling for resiliency planning prior to the implementation of mitigation techniques in 

Atlantic City and Camden, New Jersey.  A high-resolution hydraulic model was used to 

simulate the spatial extent of flooding for a specified region in both communities and 

compared to the output of the coarse resolution models HAZUS-MH and SLOSH. This 

paper illustrates how high-resolution simulations are capable of showing fine-scale 

differences in inundation levels, which will enable communities to focus on reliable 

resiliency measures with the potential of significant economic savings as compared to the 

use of coarser models. The dual focus of this paper is to understand the importance of 

flooding and illustrate how flood mitigation techniques, such as green infrastructure, in 

SWMM can benefit areas threatened by flooding. 
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Chapter 2 

Literature Review 

 

Sea level has been rising over the past century due primarily to the climate change 

(Bindoff et al 2007). A warming climate has led to increased rates of melting of glaciers 

and thermal expansion of the ocean’s water.  This has increased the risk of coastal and 

inland flooding throughout much of the world.  In the US, sea-level rise threatens 

infrastructure (i.e. bridges, transportation, dams, buildings, docks, etc.) and the economy. 

The Atlantic seaboard is highly prone to coastal flooding and has received billions of 

dollars in damage all along the coast due to tropical storms and hurricanes (NOAA 

2014).  A large portion of industry and commerce are vulnerable due to their location 

within the low-lying areas along the coast. Hurricane Sandy damaged hundreds of power 

lines, affecting more than 8 million residents in the United States (LiveScience, 

2013).   New York City’s Metropolitan Transportation Authority received about 5 billion 

dollars for damages (Toro 2013) to maritime facilities (Smythe 2013) caused by Hurricane 

Sandy. Additionally, coastal counties contribute $6.6 trillion, or just under half of the 

country’s gross domestic product, to the U.S. economy and are home to almost 40% of the 

U.S population (National Ocean Service 2014). This makes coastal communities extremely 

valuable to the country, meaning they need to be protected well and greatly managed.    

An extreme sea level rise event along the northeast coast of the United States, was 

recorded to be around 12 cm from 2009 to 2010 (Goddard, 2015), and it is evident that the 

coastal flood zone is becoming wider and deeper with the potential for more damage from 

storm surge and flooding. Specifically, the southern New Jersey coast is at high risk of 
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flooding, economic loss, and land depletion due to sea level rise caused by climate change 

and the isostatic rebound of the land after the retreat of glaciers from the last Ice Age. The 

bayside along New Jersey’s barrier island communities are one of the nine high-risk areas 

for flooding along the North Atlantic Coast according to the U.S. Army Corps of Engineers 

(Gurnian, S. 2015).  and a study done resulted in Atlantic City’s sea level rise to about 1.5 

meters by 2100 (Degener, R 2015).  Additionally, an analysis done by Strauss et al (2014) 

projected a sea level rise of 0.39 meters in Atlantic City by 2050.  Atlantic City is at high 

risk and needs resiliency planning methods to help reduce vulnerability to potential loss 

and destruction. Therefore, there is a need for information and analyses on the hazardous 

flooding issues that the city faces.   

Cutter (1996) has identified vulnerability as the combination of the physical risk 

and social response due to a hazard within a specific geographical area- ‘vulnerability by 

places.’ Using the spatial distribution of flood risk, land use and people within the different 

flood-risk zones, Wu et al (2002) found that due to Cape May County’s geographical 

location and its elevation of only 3 m above mean sea level, storm surges and sea level rise 

were major issues that have to be dealt with immediately.  It was also found that the 

increase in sea level due to climatic change will increase the vulnerability of the county to 

coastal storms.  

One tool to evaluate the threatening conditions of a potential storm is the Sea Lake 

and Overland Surges from Hurricane (SLOSH) model.  The SLOSH model estimates storm 

surge heights and winds from historical and predicted hurricanes (NHC 1999b). Wu used 

the SLOSH model with a Digital Elevation Model (DEM) of Cape May County to depict 

what areas of the county would be inundated for a projected storm surge height, identifying 
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risk areas. Riverine and inland flooding was also taken into account based on Q3 flood data 

provided by FEMA (1996).  Combining these major threats of destruction allowed the team 

to depict a more accurate physical characterization of the flood risk in the area.  Not only 

was the physical exposure of flooding examined, but the social vulnerability of the 

community was identified as well. Variables such as population, housing units, number of 

females and other factors were examined within the study area.  An overall flood 

vulnerability map was developed by dividing the overall vulnerability index into low, 

moderate, high and very high. It was concluded that climate change would have substantial 

impacts on the coastal communities and sea level rise would increase the risk in areas that 

were already at higher risk. These studies signify the need for more research to help 

mitigate such flooding hazards. Solutions need to be readily available to be implemented 

for all coastal communities that are at a potential for loss. 

While an understanding of the vulnerability of a community is crucial, it is also 

important to understand the fundamentals of community resilience.  Resilience is the 

ability of a system to respond and recover from disasters and allows that system to absorb 

the impacts and cope with an event (Cutter et al., 2008).  It has been suggested that 

resilience can be defined as a system’s capacity to absorb disturbance and reorganize into 

a fully functioning system (Adger et al., 2005; Klein et al., 2003; Folke 2006).   This 

includes a system’s capacity to return to its original state as well as advancing the system’s 

resilient capabilities through learning and adaptation. Other resilience models often include 

the robustness, redundancy, resourcefulness and rapidity of resilient infrastructure 

(Tierney, 2003), but none have succeeded to include the antecedent social factors that occur 

at the local levels or to account the resilience of the natural environment. Challenges remain 
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in the development of consistent factors that can be used to evaluate the disaster resilience 

of communities.  Since it is difficult to quantify resilience and get a solid measurement of 

caution or awareness, there are indicators used to compare relative levels of resilience 

between places or analyze trends over time. These indicators are very useful and important 

when trying to reduce complexity, measure progress, map the impacts and set priorities for 

decision making. A society can be considered resilient in different ways that have to be 

measured on different scales. For example, social resilience is influenced and can be 

increased by improvements in communication, risk awareness and 

preparedness.  Economic resilience is influenced based on the mitigation strategies that 

aim to lessen the probability of failure of the community (Rose, 2006). 

Goddard et al (2015) have developed the Disaster Resilience of Place (DROP) 

model, which includes a conceptual basis for establishing baselines of measuring 

resilience, and is designed to present the relationship between vulnerability and 

resilience.  This model was created specifically to address natural hazards.  It focuses on 

resilience at the community level, and the model emphasizes the social resilience of place 

(Cutter, 2008). Within the DROP framework, recovery is an ongoing process within a 

community until it is fully back to its original or better state, where preparedness and 

mitigation including social learning can be improved.  The DROP model provides a basis 

for all communities to learn from the hazardous events that are experienced and gives them 

an opportunity to improve their mitigation techniques. For example, if a community 

experiences a 10-year flood once, their absorptive capacity probably would not be 

exceeded, however, if they experience a 10-year flood every year in several consecutive 

years, then their resources will not be sufficient for effective coping responses.  
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While vulnerability and resiliency are crucial to developing a framework for 

understanding climatic hazards, it is also important to have the modeling capability for 

climate projections and predictions of the potential for future impacts. There are existing 

models, such as HAZUS-MH (Hazards US) and SLOSH (Sea, Lake, and Overland Surges 

from Hurricanes) provided by The Federal Emergency Management Agency (FEMA) and 

the National Oceanic and Atmospheric Administration (NOAA), respectively. The 

HAZUS model calculates the exposure for selected areas and then characterizes the 

intensity or level of the hazard (flood level) using the return period of a flood, (e.g. a 100-

year return period is a flood that only occurs every one hundred years). HAZUS can 

calculate the potential losses such as structural damage, economic loss, etc.   SLOSH 

estimates the level of storm surges resulting from historical, hypothetical or predicted 

hurricanes.  However, these models are applicable for relatively large scales beyond the 

focus of local communities.  The ability to focus on local impacts and potential mitigation 

techniques can help to focus efforts to reduce vulnerability, increase resilience, and direct 

economic investment to where it will be most effective.   

Additionally, there is a need for the use of high-resolution flood models in advance 

of implementation of any stormwater management system. The overall goal of this study 

was to compare national flood assessment models  to an enhanced regional flood model 

and to illustrate how flood mitigation techniques can benefit areas threatened by flooding.  

A study done in Belgium along the lower part of the Ourthe River illustrated how 

micro-scale analyses for protective measures of threatened coastal communities, along 

rivers and oceans, is extremely important (Ernst et al. 2010.) The refined analysis allows 

focus to be set on assets such as structures, buildings and facilities and shows the 
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effectiveness of potential local measures for inundated areas in the community. This study 

took advantage of available data that characterized each building’s vulnerability and used 

a two-dimensional flow model to provide high-resolution maps of flooding.  

The availability of high resolution and highly accurate topographic datasets in 

several countries have allowed the researchers in Belgium to collect significant data from 

airborne laser altimetry (LIDAR) and echo-sonar techniques. Using this exceptional 

quality of topographic data and a fine-scale grid as fine as 2-m by 2-m enables modeling 

at such a scale to individually pinpoint streets and houses rather than a larger grid that 

generalizes a vast area used by existing national models. This study’s fine-scale model was 

so precise that when compared to historic flood events, observed data and numerical 

predictions from the simulation were in agreement, validating the uniqueness and 

consistency of high-resolution modeling. This study showed by using a fine-scale 

approach, the deduction of flood impacts and destruction could be made and there was an 

understanding about the level of effects a potential storm scenario will bring. This study 

used hydrological data from a statistical analysis of discharges measured at a nearby tide 

gauge for the hydraulic boundary conditions and found inundation depths and velocity 

components for each considered discharge. The researchers were also able to apply their 

exposure evaluation equation to the analysis and determine exclusive results. The data 

shows a detailed spatial distribution of affected residential and non-residential buildings 

for a 154-year flood, with the water depth in each area, where each type of building is 

located. The results also showed that for discharge values lower than the 100-year flood, 

not many houses undergo flooding with a water depth higher than 1.3 m but there is an 

increase in the number of houses flooded by less than 0.3 m and even more of an increase 
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in houses flooded with a water depth in between 0.3 m and 1.3 m. In contrast, for discharge 

values higher than 1000 m3/s, the number of houses flooded by less than 1.3 m decreased, 

revealing that for such extreme storm events, even buildings located at the edge of the 

inundation extent undergo flooding with significantly greater water depths (Ernst et al. 

2010). This crucial information that was found validates the importance and impending 

reputation that fine-scaled hydraulic modeling has. 

Another study done by the same researchers also endorsed the need for fine-scale 

hydraulic modeling to make accurate predictions and forecasts. This study took place along 

the Dendre River in Belgium (Ernst et al. 2010.) The hydraulic model provided the user 

with great detail and precision, due to the quality of scale and topography using laser 

altimetry. This type of modeling takes current configuration to a higher level, in displaying 

the exact depth of flood that a house will endure. The spatial resolution of this model ranges 

from 4 m to 1 m and is coupled with supreme high-resolution digital elevation models 

(DEMs), which provides the user with a very impressive layout. For example, for 

validation purposes, the flood of January 28th, 1995 was modeled in the fine-scaled 

hydraulic modeling software. The peak discharge of the storm evaluated at 180 m3/s. After 

pertinent parameters were set in place, that same peak discharge value was inputted into 

the model corresponding to a 15-year return period. The predicted spatial pattern of the 

flood using the modeling software matched the observational pattern flawlessly. Another 

comparison was done for a different reach of the river. To take advantage of such fine DEM 

information, the grid cells were able to downsize from 4 m to 1 m resolution. The flood on 

January 3rd, 2003 was used to compare to the new simulation. This flood had a peak 

discharge of 150 m3/s.  Six survey points were used to validate the accuracy of the fine-
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scale flood model.  The observation and calculation values in centimeters were extremely 

similar. Point 1 had an observation value of 82 and a calculation value of 86. Point 2 had 

an observation value of 5 and calculation value of 15-30 at the center of the street. Point 3 

had an observation value of 25 and calculated value of 5 along the houses. Point 4 had an 

observation value of 20 and calculation value of 30. Point 5 had an observation value of 

80, calculated value of 90 and Point 6 had an observation value of 94, and the calculated 

value was 90 cm (Erpicum, S. et al, 2009). The computation of this particular study also 

shows the flow regime, which was compared to authentic pictures of the event. The flow 

path in the simulation matched the flow path in the aerial photograph. These results are 

prime for decision makers and policy makers in locating priority areas where mitigation 

techniques are needed to reduce flood risk.  

These studies are only a small illustration of why there is a need for the use of high-

resolution flood models in advance of implementation of any stormwater management 

system. These flood models can help reduce risk as well as minimize over/ under 

engineering design costs because of the precision these detailed models provide. A dollar 

spent on mitigation is repaid four times over in dollars not spent on response and recovery 

(Rose et al. 2007; FEMA 2011).  With such highly accurate DEMs and flow simulations 

using a grid size as small as 1 m, these models succeed in the expectations of true flood 

depths and flows.  The precision of these models is what is needed in order to keep 

threatened communities from being devastated by sea level rise, storm surge and severe 

flooding.  

The frequency of hurricanes and storm surges seems to be increasing due to the 

climate changing and sea level rising as coastal communities are becoming extremely 
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vulnerable to the flooding produced by these heavy storms. Camden, New Jersey, an 

underprivileged urban community with a combined sewer system needs resiliency plans 

set in place to mitigate the potential for damage due to the vulnerability of the community. 

Based on the National Climate Assessment intermediate high sea level rise scenario, 

Climate Central has projected a 1.28 meter rise above the local high tide line locally near 

Camden by 2100, from a 1992 baseline (Climate Central, 2016). The Assessment analysis 

concluded that there is a 33% risk of at least one flood exceeding 4 feet by 2030, an 84% 

risk by midcentury and a 100% risk by 2100 that a flood will reach and exceed 4 feet. Even 

the slightest increase in sea level rise makes rare floods more common because it adds to 

the tides and storm surges. The increase in sea level will essentially cause more sustained 

extreme storm surges and increased coastal erosion, damaging and affecting many parts of 

local communities along a waterbody. 

The city of Camden contains a combined sewer system in an urbanized area and is 

parallel to the Delaware River, both causing problems during severe storm events. The 

combined sewer system carries sanitary sewage and stormwater through the same system 

to a treatment facility. When there is a rainfall event, it’s likely that total wastewater flows 

will exceed the capacity of the system, which then overflows into nearby streams, lakes, 

and roads. Any rainfall event affects the Delaware River for two reasons, water quality and 

flooding. If the event is large enough, contaminants will be discharged into the river as well 

as the water level will rise onto the surface and flood a particular area within the city. For 

example, a slow moving system dropped about four to six inches of rainfall on portions of 

the south-central New Jersey area on July 12-13 in 2004 (DRBC, 2015). More than a foot 

of rainfall was measured in some locations and as a result, 25 roads were closed and 



www.manaraa.com

12 
 

hundreds of residents had to evacuate. In the south central New Jersey area, a total of 17 

dams were either partially or totally breached and countless numbers of streams flooded 

their banks. Being a county flood disaster zone, Camden County was made eligible for 

federal aid. Events like these are on a continuous climb for the future and preventative 

measures are crucial.  

Due to the climate changing which is affecting water levels, communities need to 

be prepared and increase their resilience towards climatic disasters. Urban communities 

like Camden are at higher risk for flood damage because of their infrastructure, increased 

impervious surfaces that do not allow stormwater to drain, and its economic status. It is 

one of the poorest cities in the United States (MetroFocus, 2012) and because of this, storm 

preparation and resiliency has not been a priority for the community. This is a problem due 

to the probable increase in frequency of severe storms, which will cause more damage to 

the city. 

There was a case study done on the Caribbean island of St Maarten where key 

elements of disaster management planning were used. The concept of a ‘digital city’ was 

explored, which is a way to improve the preparation for natural disasters. Resiliency is a 

quick recovery characteristic of a city or community.  Preparation for a natural disaster, 

prevention for hazards from developing and reducing the effects of a disaster are all key 

components to resiliency planning. The ‘digital city’ method includes the application of 

hydroinformatic technologies in urban water systems (Vojinovic and van Teeffelen 2007). 

Hydroinformatic technologies use simulation modeling and information technology to 

better water management.  The ‘digital city’ concept is comprised of city administrators 

collecting and analyzing data for their urban areas through Geographic Information 
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systems (GIS). The information and communication provided by these maps allow them to 

delineate floodplains, zone areas for protection for flooding and identify plans for different 

types of land use (Yang and Tsai 2000). With this information presented properly, natural 

disaster public meetings can be achieved. The idea also includes the measurements of 

sewerage water levels and flows, groundwater levels, etc. These measurements associated 

with the remote sensing of the land use and terrain levels, rainfall predictions, and routine 

asset inspections can help provide a digital overview of the risks associated with potential 

disasters (Price, R. K. and Vojinovic, Z. 2008).  

Decision making support systems can be combined with data and modeling systems 

to increase resiliency and provide warnings of hindering disasters (Price, R.K and 

Vojinovic, Z. 2008). The monitoring system combined with an effective modeling system 

can form a basis for a reliable decision support system which has a few major functions. 

These functions include improved ways of determining risks and implementing mitigation 

techniques, the compilation of all data and modeling systems being used as reliable 

forecasts for a warning system and another function is system to be used as a tool for 

education programs to intrigue the public. These functions make it very obvious that there 

is a need for such technological advances and digital data to develop effective plans and 

communicate accurate information to the public. 

The main focus of the ‘digital city’ concept is creating an environment in which 

users responsible for various aspects of the disaster management plan are permitted to 

appreciate various flood-related problems and as a result to make better judgements, 

improved decisions and efficient action plans through the decision support tools provided 

(Price, R. K. and Vojinovic, Z. 2008).  
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This paper used The Associated Programme on Flood Management (2004) as 

insight on lessons learned from urban flood disasters across the world. A few lessons that 

are suitable for the study presented in “The Significance of a High Resolution 2D Hydraulic 

Model including Green Infrastructure for Assessment of Coastal Community Vulnerability 

and Resiliency” are as follows: 

 Integrate urban planning and water management, bringing together city 

planners and water engineers to craft a more viable and sustainable urban 

environment 

 Adopt a sound mix of structural and non-structural strategies for mitigating 

urban flooding, taking into account the uniqueness of the area and analyzing 

the associated problems and opportunities.  

 Break the poverty cycle through improved risk management that recognizes 

the vulnerability of the poor. 

These three points are the true basis of what needs to be done in order for resiliency 

in threatened areas to succeed. Urban planning and water management are crucial for a 

more sustainable environment to handle such climatic stresses. More importantly in this 

case, in order to decrease the poverty of Camden, New Jersey, improved risk management 

needs to be achieved so the disaster cycle discontinues. Once the city is at a steady state 

and less vulnerable, it won’t be seen as such a deficient community.  

The case study done on the Caribbean Island of St. Maarten can be used to further 

the development of the Green Infrastructure resiliency method, combining physical 

information with social interaction. The case study started with modeling different 

scenarios for different rainfall events. The hazards were evaluated and the extent of the 
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flood damages were quantified using Average Recurrence Interval (ARI) flood events and 

corresponding hazards and damages were calculated. Then the impacts of the flood disaster 

were identified and immediate assistance to the affected sections of the community are 

initiated using a decision tree created by the authors. Then, guidelines on how to assess the 

causes and effects of the flood are produced. This process can be explained in detail in 

Urban Flood Disaster Management (Price, R.K and Vojinovic, Z. 2008). 

This case study provides a complete framework for managing urban flood disaster, 

combining hydroinformatics and city concepts. With the development of new information 

and communication technologies, the possibility of reducing risk associated with disasters, 

communication improvement and proactive communities assisting recovery from a disaster 

event can be achieved, which is highlighted in the study. Many communities need to adopt 

this type of framework, in order to increase resiliency and risk management practices.  

A method to mitigate flooding is the implementation of Green 

Infrastructure.  Green Infrastructure (GI) is very beneficial for building resilience to protect 

urban communities against climate change such as warmer temperatures, increased 

flooding and changed rainfall patterns. GI practices like bio infiltration basins, green roofs 

and rain gardens are integral elements of water management that have the potential to 

prevent major flooding in areas that are prone to water damage. Green Infrastructure is a 

cost-effective, resilient approach to managing wet weather impacts that provides many 

community benefits (EPA 2015). Green Infrastructure is a natural design that reduces and 

treats stormwater as well as provides environmental, social and economic benefits to a city 

or community. In urban areas, rainwater falls and puddles onto building roofs, streets and 

parking lots, where the water is unable to seep into the ground due to the increase of 
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impermeable surfaces. Due to this occurrence, stormwater is a major cause of pollution in 

urban areas. The runoff and its discharge into nearby water bodies contains trash, bacteria, 

heavy metals and other pollutants from the urban landscape (EPA 2015). Heavier storms 

increase the flow of the stormwater system, causing erosion and flooding, essentially 

damaging the natural habitat, property and infrastructure of the city. GI practices are highly 

beneficial and use vegetation, native soils and other elements to capture the stormwater, 

treat it, store it and then filter it through the ground. These are BMP (best management 

practices) that manage water, mitigates flooding and creates a healthy urban environment 

as well as increased the resiliency of the community.   

The South Australian Green Infrastructure Project was developed to illustrate the 

effectiveness of GI practices and support the case to invest in Green Infrastructure (Pitman, 

S.D., Daniels, C.B. & Ely, M.E. 2015).  The following information provided verifies the 

importance and efficiency of green infrastructure, making it an operative decision to 

implement green infrastructure in vulnerable urban areas, if not everywhere. 

In 2010, cities held 3.5 billion people, 50.5% of the world’s population, and by 

2050 these urban environments will need to accommodate an additional 2.6 billion people 

(Potter, 2013.) The idea of green infrastructure has escalated due to the positive outcomes 

that have been demonstrated, as well as the professional research that has been done by 

planners, designers and engineers. Green infrastructure provides shade, clean water, 

diffused light, filtered air, and many more benefits (Daniels & Roetman, 2014). The botanic 

gardens on the roofs and walls of buildings capture hazardous particulates, keeping towns 

and cities healthy, while also providing aesthetics, attracting more people to the area. These 

practices greatly build resiliency in urban communities, protecting them from natural 
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disasters such as heavy rainfall and flooding. Water Sensitive Urban Design (WSUD) 

practices are an approach to green infrastructure such as bio infiltration basins, stormwater 

harvesting, and the use of porous surfaces (Wong, 2011). These practices serve as a 

mitigation technique for frequent flooding in urban areas and supports the green space 

initiative in many cities, networking water systems and these spaces to deliver 

environmental, social and economic value (Ely & Pitman, 2014.) 

Resiliency planning is pertinent for communities who are vulnerable to 

considerable flooding associated with such rain storms, hurricanes and storm surges. Urban 

flooding has been an ongoing problem due to the vast amount of impermeable surfaces 

associated with these areas.  Green infrastructure suggests a great alternative approach for 

greater resiliency by using the WSUD practices as well as other designs that are very 

effective in reducing the likelihood and consequences of damage and risk (Maunsell, 

2009). The benefits of using green infrastructure for mitigation and resiliency planning are 

infinite and the review in Green Infrastructure as life support: urban nature and climate 

change has demonstrated such success in the natural modification. These designs will help 

not only the common population in threatened communities but it will also help the natural 

environment as well. This type of flood mitigation is a new, innovative plan for 

building.  The environment is extremely important and with these strategies, many 

problems can be solved.  

One of the main objectives of this paper is assessing the effectiveness of green 

infrastructure to mitigate the impacts due to severe storm events.   Likewise, Versini et al 

(2015) have completed research to assess green roofs from building scale to basin scale; to 

understand if similar implementation of green roofs will affect the entire basin in such a 
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way. Green roof coverage is expanding; so much, that 10 km2 of green roof coverage is 

starting to happen in Germany (Lassalle,2012). Green roofs are specific elements to the 

urban city where there is nowhere left for infrastructure.  Green roofs contribute to the 

aesthetic worth of a building, they reduce the heat island effect, protect biodiversity, and 

manage urban runoff.  There are numerous beneficial effects of green roofs, let alone the 

whole umbrella of green infrastructure. The main performance of green roofs is stormwater 

management, reducing annual runoff and peak volume, as well as managing the rainfall 

intensity and water quality. During a yearlong experiment in New Zealand, where six 

different areas from 10 to 50m2 were placed with green roofs on Auckland University. The 

results found 66% of precipitation was retained and a peak flow reduction ranged from 

31%-100% within six of the different areas. Another surface in Genoa, Italy was covered, 

350 m2 was divided into two plots, and after 6 months, the results shows volume retained 

of 10%-100% and a peak flow reduction ranging from 80%-100%.  These studies illustrate 

the effectiveness of green roofs alone, supporting research to go one step further and 

explore the success of green roofs at a basin scale as well.  

Versini et al used SWMM 5.0 to conduct their research. For their case study, Hats-

de-Seine, France was modeled.  It is a highly populated and urbanized area with 1.5 million 

inhabitants within a 176 km2 area. Their stormwater system is extremely sensitive due to 

the rapid growth in the early 90’s and is prone to local flooding. The Chatillon basin was 

split into several sub-basins, each sub-basin having an infiltration area and then an 

impervious area where a green-roof was implemented. The impacts of the green roof scale 

showed an expected reduction in the hydrological response; the higher the covering, the 

higher the reductions of peak discharge and volume. Results showed that at the roof scale, 
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reductions of peak discharge and runoff volume are of the same order of magnitude; 12.5% 

covering of the roof resulted in about 10% reduction, 25% covering resulted in about 20% 

reduction, 50% of covering resulted in about 40% reduction and 100% of green roof 

covering resulted in about 85% reduction of hydrologic responses. At a basin scale, from 

a green roof covering of 12.5%, there was an average of 4.9% runoff reduction, and a 25% 

covering of green roof showed an average increase in reduction of 9%. With 50% green 

roof covering, there was an average peak discharge of 18.6% and 100% green roof covering 

averaged a reduction of 35.6%. This supports the suggestion that the more green-covering 

on eligible buildings, the more reduction there will be. The conclusions of this study show 

that the amount of precipitation is a limiting factor for the workability of the green roof, 

both at a building and basin scale. The higher the precipitation, the less of a hydrological 

impact there will be from the green roofs, but overall the green roofs are successful in their 

purpose. 

Camden has already initiated a plan of action to help support its current and future 

flooding issues. The Camden SMART Initiative (Stormwater Management and Resource 

Training) was formed to improve the quality of life and environmental and economic health 

of the City of Camden (CCMUA, 2011). They support a green stormwater infrastructure 

approach, which will be environmentally and economically beneficial to remediate the 

urban community and its waterways. This initiative is a collaboration between the City of 

Camden, Camden County Municipal Utilities Authority (CCMUA), Rutgers Cooperative 

Extension Water Resources Program, New Jersey Tree Foundation (NJTF), Cooper’s Ferry 

Partnership (CFP), New Jersey Department of Environmental Protection (NJDEP), public-

private partners, community organizations, and Camden residents. This collaboration 
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between so many individuals has helped revitalize the community with green infrastructure 

projects and programs. These programs are benefiting the city by preventing neighborhood 

flooding, reducing combined sewer overflows, improving air and water quality, and much 

more. There have been forty-five completed projects since 2011, capturing 61.2 MG of 

stormwater each year. There are no projects in the process currently, but continued research 

will prove that green infrastructure will help the community for the future environmentally 

and economically. 
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Chapter 3 

Methodology 

3.1 Context of the Study 

A fine scale hydraulic modeling interface and program, Surface-water Modeling 

System (SMS) and TUFLOW, were used to show the significance of high-resolution flood 

mapping in Atlantic City and Camden, New Jersey. This fine scale hydraulic model was 

then compared to national coarse-resolution models, HAZUS and SLOSH, to defend the 

argument more substantially, of how fine-scale modeling is significant in the preliminary 

stages of resiliency planning. The study area of Camden was also modeled in a program 

provided by the USEPA, Storm Water Management Model (SWMM), which illustrated the 

effects of flooding and the benefits of green infrastructure implementation. 

3.2 Study Areas 

3.2.1 Study area, Atlantic City. Atlantic City, New Jersey is in Atlantic County, 

about 150 km south of New York City and lies at the north end of Absecon Beach, a barrier 

island along the coast of New Jersey (Figure 1). Bridges connecting the mainland to the 

city span the Intracoastal Waterway and the shallow bays. Atlantic City is a resort town, 

including hotels, casinos and beaches along a stretch of more than five miles of 

boardwalk.  The area consists of 44 square km and 16 square km of water. According to 

Census Bureau 2010, Atlantic City had a population estimate of 40,000 people.  
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This study selected a small portion of the city to analyze, allowing for a more 

detailed and precise result. This specific area was chosen to analyze due to the constant 

damage it suffers.  Atlantic City has had their boards ripped up from the coastline, resident 

cars turned over, power lines cut, basements flooded and businesses shut down due to 

hurricanes, and severe weather events that are increasingly inevitable as sea level rise and 

climate continue to be a concern. Additionally, this area was chosen for analyzation due to 

the high volume in tourist activity and conventions in this area. This city offers the public 

vast amounts of opportunity and recreation, creating a vulnerable area that needs to be 

protected. 

Figure 1. Study Area- Atlantic City. 
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Three areas were analyzed in Atlantic City. One area is a vacant lot next to the 

channel, with homes and docks located further up the channel. This area was specifically 

chosen due to the high flooding that it receives when a storm hits, and because of the risk 

in the area for potential sea level rise.  The second area that was analyzed consists of a strip 

of two-story homes right along the channel with ownership of boats. This area is highly 

vulnerable due to its low resilient characteristics of little to no flood barrier implementation 

or green infrastructure. The third area of Atlantic City that was analyzed, like the previous 

area, is highly prone to flooding, which has been shown on sea level rise risk maps provided 

by Climate Central and NOAA as well. The third area has been chosen due to the high risk 

of inundation in the area during severe storms. Figure 2 shows these three areas of 

interested showcased in this study.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 shows three points in each study area.  Three points were analyzed due to 

the different possibilities of inundation depths at different points in one area. The three 

Study Area 3 

Study Area 2 

Study Area 1 

Figure 2. Study Areas of Atlantic City. 
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points in the first study area are about 20m apart, the points in the second study area are 

about 5m apart and the third set of points in the third study area are about 40m apart.  The 

reason for the different distances of points is to show that even with points 40m apart to as 

close as 5m apart, there will be a different depth of inundation and fine-scale modeling is 

precise enough to illustrate that characteristic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2 Study area, Camden. Camden is a city in Camden County on the west side 

of southern New Jersey.  According to the Census Bureau population estimate for 2015, 

there is an estimated population of 76,119 people living in this urban community. Camden 

is 4.7 miles southeast of Philadelphia, Pennsylvania and parallels the Delaware River 

covering 8.82 square miles of land. The estimated median household income in 2013 was 

about $22,043, compared to all of New Jersey with $70,165. Camden is a very poor 

community, where help and planning is needed directly. Figure 4 depicts the extent of 

Camden City, showing the study area for the analysis. 

 

Figure 3. Specific Points Analyzed.  
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Only a few blocks were analyzed for the purpose of this study, allowing for a more 

detailed and precise result. Camden City has had numerous road and bridge closures, severe 

car accidents, heavy flooding and much more because of past hurricanes and severe 

weather events that are increasing in frequency due to climate changes. The hazards are 

considerably alarming and with the city offering the Adventure Aquarium, Campbell’s 

Stadium, Rutgers University, Cooper Hospital and many other attractions that could be 

beneficial to the community, the continuous cycle of destruction needs to end with proper 

care, planning and resiliency methodology.  

This portion of the large city was chosen due to the high level of flooding that 

occurs in this area, as shown in Figure 5, which illustrates the hotspots of Camden. 

Figure 4. Study Area in Camden, New Jersey. 
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3.3Modeling Instrumentation 

3.3.1 Programs. Surface-water Modeling System (SMS) is a program for building 

and simulating water surface models. SMS allows the input of scatter set data and imagery 

to model potential flooding. SMS helps to predict flood location due to certain flow patterns 

from inland and coastal flooding. It also allows the representation of possible flooding 

scenarios due to rainfall, storm surge or potential sea level rise. TUFLOW (Two-

dimensional Unsteady Flow) is the engine used for this study that is supported through the 

graphical user interface (GUI) SMS to simulate the free-surface water flow for urban 

waterways, rivers, coastlines, etc. This computer program simulates flood and tidal flow 

through an area of interest and shows the impacts that it has on that area. The fully 2D 

solution algorithm of TUFLOW is based on Stelling (1984) and solves the full two-

dimensional, depth averaged, momentum and continuity equations for free-surface flow 

Figure 5. Camden Hotspots (Camden Smart Initiative). 
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(TUFLOW 2007). TUFLOW is specifically oriented towards establishing flow patterns in 

coastal waters, estuaries, rivers, floodplains and urban areas where the flow patterns are 

essentially 2D in nature. 

The functions of this dual component were compared to the functions of two 

national models, SLOSH (NOAA) and HAZUS (FEMA), currently used for 

predictions.  SLOSH (Sea, Lake, and Overland Surges from Hurricanes) provides a 

compilation of data gathered by the NWS (National Weather Service) in regards to the tidal 

surges resulting from hurricanes of increasing intensities (Jelesnianski, 1992). The model 

uses historical hurricane data as well as weather patterns to predict the maximum of 

maximum (MOM) or worst-case- scenario effects that will be produced during each 

hurricane scenario (Glahn, 2009). The program also provides this data for coastal regions 

all around the United States and even for some foreign countries. To synthesize and 

manipulate the data, ESRI ArcMap is used. HAZUS is a GIS-based modeling program 

used for estimating losses from flooding, hurricane, and earthquake scenarios (FEMA, 

2007). HAZUS produces graphic illustrations of high-risk locations and areas affected by 

different disaster scenarios as well as economic loss estimates in thousands of dollars. 

Additionally, it uses internal data to estimate the functionality of infrastructural elements 

following earthquakes and storms of different return periods. 

 Another program, Storm Water Management Model (SWMM) by the EPA, was 

used to input green infrastructure into the system to analyze the effects of green roofs and 

rain gardens in a high risk area of Camden. SWMM is a dynamic hydrologic-hydraulic 

water quality simulation model that is used for the simulation of runoff quantity and quality 

from primarily urban areas (EPA 2016). It tracks flow rate, flow depths and quality of water 
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in each pipe, as well as models hydrologic performances of low impact development 

controls such as rain gardens, green roofs, bio swales, etc.  

3.3.2 SMS/TUFLOW model development - Atlantic City.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 briefly simplifies the fine-scale modeling process in nine comprehensible 

steps. To understand the details of the process, the firm basics had to be acknowledged 

first. Before the modeling process could begin, the subject area needed to be displayed in 

ArcMap. The creation for a full extensive map was needed to begin the modeling process 

for flood detection and mitigation. It was a detailed process where Table 1 includes the 

numerous steps taken to complete the map. 
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Figure 6.  Modeling Process Flowchart. 
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The DEM of the study was obtained from LIDAR data downloaded from NJDEP 

(New Jersey Department of Environmental Protection), NOAA and USGS. Figure 7 

illustrates the finalized DEM and all of the parts that had to be combined together to create 

such a large dataset. Once the creation of the DEM was finalized, it was transferred into a 

raster file to import into Surface-water Modeling System (SMS). Surface-water Modeling 

System (SMS) allows the input of scatter set data and imagery to model potential flooding. 

SMS helps to predict flood location due to certain flow patterns from inland and coastal 

flooding. It also allows the representation of possible flooding scenarios due to rainfall, 

storm surge or potential sea level rise. Once this very crucial modeling step is complete, 

strategic planning and processing is next. 

Table 1  

Map Generation Steps 

Step Process 

1 Land use, elevation, and bathymetry data were downloaded from the state 

sites NJDEP and NOAA, and merged into one data file 

2 LIDAR (Light Detection and Ranging) data were downloaded from USGS 

Earth Explorer to create a dataset of the city 

3 LIDAR data and surface features contained in the downloaded LAS files 

were generated using the Create LAS Dataset tool in ArcMap to generate a 

DEM (Digital Elevation Model) 

4 Estuarine and coastal bathymetry had to be downloaded 

5 Bathymetric Digital Elevation Grids offshore of NJ were downloaded as 

.e00 files.  These files had to be exported to a GRID file in order to receive 

all the physical data 

6 Once all of the files were inputted into ArcMap, the Mosaic tool was used 

to combine the land topography of Atlantic City, with the bathymetry data 

7 This created a raster dataset prepared to be imported into SMS for 

modeling purposes 
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Once the large file as shown in Figure 7 was imported into SMS, the creation of the 

mesh and Cartesian grid began. Figure 8 shows the generation of the grid. This mesh allows 

for the data of elevations and material properties to coincide, implementing a large grid 

within the data file.  This grid contains a great deal of single cells that have different volume 

capacities, elevations and areas. The cells in the case are 10 m by 10 m. 

 

 

 

 

 

 

 

  Figure 7. ArcMap Raster Dataset of Atlantic City. 

 

Figure 8. Cartesian Grid. 
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The extents of the ‘2D domain’ are defined based on the general land topography, 

which includes the low- lying areas that are prone to flooding. The model also uses 

upstream and downstream boundaries represented as a flow-time and flow-head boundary, 

respectively, to estimate peak flow.  The grid is very sensitive and needs to be precisely 

built based on available information on topography and DEM in order for the simulation 

of a flood to run properly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 displays the inputs and outputs of the fine-scale model as a flowchart. Once all 

the Scatter Data, GIS Data and Map Data are inputted, and the simulation has run properly, 

there are many outputs and results that are used for analysis. 

Figure 9. SMS_TUFLOW Model Characteristics. 
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 The boundary conditions displayed in Figure 10 contain data that were provided 

by USGS National Water Information System, Web Interface. Two storms were chosen to 

be analyzed and the data from the two appropriate tide gauges were inputted into the 

corresponding boundaries. Data on land-use were used with surface elevation data to 

estimate roughness values for channels and overland areas.  The model used inland and 

ocean boundaries represented as water surface elevation over a specified time. However, 

observed data for the ocean boundary were not available, therefore model calibration was 

done using tide data available from two USGS tidal gages.  One tidal gage, USGS gage 

01410600 (Gage 1) Absecon Channel at Atlantic City, NJ (39°22'40", 74°25’25”), was 

located near the ocean boundary, and the second tidal gage, USGS gage 01410510 (Gage 

2) Absecon Creek at Absecon, NJ (39°25'23", 74°30’00”), was located at the inland 

boundary, where the locations are shown in Figure 10. The ocean boundary was a water 

surface elevation that was calibrated using observed data from Gage 1 for a storm event on 

April 30, 2014.  The ocean boundary water surface elevation was adjusted to the obtained 

simulated water surface elevations that fit the observed water surface elevations at Gage 

1.  A regression equation was developed relating the ocean boundary water surface 

elevation to observed water surface elevation at Gage 1, where the relationship is shown in 

Figure 17. 
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Once the boundary conditions were set in place, rainfall data had to be collected 

and inputted into the SMS model. Rainfall data for a general rainstorm on April 30, 3014 

was downloaded from Weather Underground provided by The Weather Company, where 

hourly precipitation data was retrieved. Rainfall data during the Hurricane Irene event was 

downloaded from NOAA Climate data online files. Table 2 shows the precipitation data 

inputted into the system. This was done by using a set of tools in the program, first creating 

a feature arc around the entire system in SMS.  Then, a polygon was created so the data 

could be inputted into the system as a boundary condition, but rather than Flow vs. Time 

for previous boundary conditions, the condition was set to Rainfall vs. Time.  

 

 

 

 

Boundary 

Conditions 

Figure 10. Atlantic City Boundary Conditions.  
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Table 2  

Precipitation Data 

April 30, 2014 Storm Event Hurricane Irene Event 

Time (hrs) Precipitation (mm) Time (hrs) Precipitation (mm) 

0 0 0 0 

1 0.254 1 1.27 

2 1.016 2 6.1 

3 0.508 3 13.97 

4 3.81 4 7.62 

5 1.27 5 7.87 

6 1.016 6 8.64 

7 0.508 7 36.58 

8 1.778 8 7.11 

9 1.112 9 5.33 

10 7.366 10 1.78 

11 16.002 11 6.86 

12 3.302 12 4.83 

 

 

 

Table 3 shows more of the input parameters used for the TUFLOW simulation. 

Time step, duration and output information were needed to complete the model setup. Once 

all the appropriate components were set into the modeling software, the TUFLOW 

simulation was able to be launched. 
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Once the simulation was finished, various amounts of information were produced 

such as flood depth, location of flooding, flow path and flood animation. Chapter 4 lays 

out the results and analysis, describing what each simulation conveyed and the significance 

of each simulation. 

 

3.3.3 SMS/TUFLOW modeling process- Camden. The extent of Camden was 

gridded and digitized in an interactive GIS map. Table 4 includes the numerous steps taken 

to complete the map in ArcGIS.  The steps on how the full extensive model was created 

from start to finish is shown in the flowchart in Figure 6. This flow chart breaks down the 

process in simplistic steps, to show how the model was developed, illustrating the 

numerous components involved to emphasize the extensive procedure.  

 

 

 

 

 

 

 

Table 3  

TUFLOW 2D Model Control 

Map Output: Interval 900 seconds (15 

minutes) 

Screen/log Output: Display 

Interval 

6 time steps 

Start Time 0 hours 

End Time 14 hours 

Time Step 5.0 seconds 

Output Datasets Depth, Water Level, 

Flow vectors 
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 The DEM of the study was obtained from data downloaded from NJDEP 

(http://www.nj.gov/dep/gis/lulcshp.html), NOAA (https://maps.ngdc.noaa.gov/ viewers/ 

bathymetry/.) and USGS (https://earthexplorer.usgs.gov/). Figure 11 illustrates the 

finalized DEM that is comprised of a few different datasets. Once the creation of the DEM 

was finalized, it was transferred into a raster file to import into a Surface-water Modeling 

System (SMS). 

 

 

 

 

 

 

Table 4  

Map Generation Steps 

Step Process 

1 
Land use, elevation, and bathymetry data were downloaded from the state 

sites NJDEP and NOAA, and merged into one data file 

2 
LIDAR (Light Detection and Ranging) data were downloaded from 

USGS Earth Explorer to create a dataset of the city.   

3 

LIDAR data and surface features contained in the downloaded LAS files 

were generated using the Create LAS Dataset tool in ArcMap to generate 

a DEM (Digital Elevation Model.)  

4 Bathymetry data were downloaded from NOAA.  

5 

Once all of the files were inputted into ArcMap, the Mosaic tool was used 

to combine the land topography of Camden City, with the bathymetry 

data.  

6 
This created a raster dataset prepared to be imported into SMS for 

modeling purposes.  
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Just like in Section 3.3.1, once this large dataset shown in Figure 11 was imported 

into SMS, the Cartesian grid was formed, shown in Figure 12.  All the steps described in 

Section 3.3.1 were also used for the creation of the grid and model in SMS for the Camden 

study area. It is the same process, with different data and the grid was built using 10m by 

10m cells.  

 

 

Figure 11. Raster Dataset of Camden. 
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Before the flood simulation was run, scatter data, GIS data and map data were 

imported and inputted into the SMS model. Then, the 2D Geometry Components, 

Boundary Conditions and Material Sets were added to the model for finalization. The 

boundary conditions displayed in Figure 13 contain data that were provided by the 

NOAA tides and currents website. Hurricane Irene hit New Jersey on August 28, 

2011.  This date was chosen to analyze due to the destruction and such increase in tide 

levels. The data from the two appropriate tide gauges were inputted into the 

corresponding boundaries (Figure 13).  

 

 

 

 

 

 

Figure 12.  2D Grid. 
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Table 5 consists of the rainfall data in Camden for the Hurricane Irene storm event 

provided by NOAA. This rainfall data was implemented into the model. This was done by 

first creating a feature arc around the entire system in SMS.  Then, creating a polygon so 

the data could be inputted into the system as a boundary condition, but rather than Flow 

vs. Time, the condition was set to Rainfall vs. Time. 

 

 

Figure 13. Camden Boundary Conditions. 

Boundary 

Conditions 
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For the model developed here, there were two boundaries to show the flow 

hydraulics and the extent of flooding due to a hurricane event that was 

simulated.  However, observed data for the upstream boundary was not available, therefore 

model calibration was done using tide data available from two NOAA tidal gauges and 

using a linear interpolation equation to define the actual upstream boundary condition. One 

tidal gauge, NOAA gage 8539094 (gauge 1) Burlington, Delaware River, NJ (40° 4.8' N, 

74° 52.4' W), was located upstream, which is the gauge that was out of range. The second 

tidal gage, NOAA gage 8545240 (gauge 2) Philadelphia, PA (39° 56' N, 75° 8.5' W), was 

Table 5  

Hurricane Irene Precipitation 

for Camden 

Time (hrs) Precipitation (mm) 

0 0 

1 7.62 

2 4.318 

3 3.048 

4 8.382 

5 10.668 

6 9.398 

7 5.08 

8 19.812 

9 30.48 

10 9.906 

11 2.286 

12 7.874 
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located at the downstream boundary; the locations are shown in Figure 13. Assuming a 

linear relationship between the two tidal gages, new values were estimated for the 

theoretical gauge by connecting the two adjacent known values with a straight line, where: 

 

 

Since the tidal gauge data retrieved for the TUFLOW model were for every two 

hours, over a 12-hour time span, six different y values were calculated. Table 6 shows 

sample calculations at time zero for the new upstream boundary, using the linear 

interpolation equation. The constant x was given a value of zero and since the two known 

tide gauges were 27359 meters apart, x1 was given a value of 27359 meters. The imaginary 

(new) gauge location was given a value of 8530 meters away from the Philadelphia gauge. 

The y1 and y2 values varied, y1 being the value of the Burlington gauge and y2 being the 

value of the Philadelphia gauge. After the new boundary condition was created, simulations 

were run to show flooding patterns.   

 

 

 

 

 

 

 

 

 

Sample calculation: 1.189 + (1.73 − 1.189) ∗
8530

(27359−0)
= 1.41  

 

 

 

3.3.4 SWMM modeling process- Camden. The second part of this research was 

using EPA SWMM 5.1 (Storm Water Management Model) to generate green infrastructure 

Table 6  

New Boundary Condition  

  Burlington Philadelphia New Boundary 

Water Level (m) 1.189 1.73 1.41 

Location (m) 0 27359 8530 

Time (hours) 0 0 0 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwigm5bSg5nNAhWH6x4KHQGXAwsQjRwIBw&url=http://www.blueleafsoftware.com/Products/Dagra/LinearInterpolationExcel.php&psig=AFQjCNFLhwJSxo8MvsVmes6vvI8gi-2qVQ&ust=1465495858476049
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propositions in the vulnerable study area of Camden. SWMM has many hydraulic 

capabilities that can route runoff and external inflows through the drainage system network 

of pipes, channels, etc. For the purpose of this study, default parameters were used for 

simplification and a small segment of Camden’s stormwater infrastructure was modeled in 

SWMM. The piping network information was provided by Camden County Municipal 

Utility Authority (CCMUA).   

Within the model, the SCS (Soil Conservation Service) Curve Number method was 

used for computing runoff. This method is commonly used and consists of three runoff 

computations. One computes total runoff volume for any given rainfall event while the 

other two estimate a peak discharge and a runoff hydrograph. Details about how each 

method within SWMM is computed can be obtained from the Storm Water Management 

Model Reference Manual- Volume 1 Hydrology (Revised).  Sample equations and 

descriptions can also be found below: 

In its classic form, the Curve Number model uses the following equation to relate 

total event runoff Q (in) to total event precipitation P (in) (Haan et al., 1994; McCuen, 

1998; Bedient et al., 2013; NRCS, 2004b): 

 

, where Smax = the soil’s maximum moisture storage capacity (inches).  

Smax is derived from a tabulated “curve number” CN that varies with soil type and 

antecedent conditions: 
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Curve numbers for various soil types and land covers are tabulated in the NRCS’s 

National Engineering Handbook (NRCS, 2004a) and in many text books. Assuming all 

rainfall that does not run off is lost to infiltration (i.e., P – Q = F), Equation 1 can be 

extended to predict total (cumulative) infiltration F (in) as:  

 

The study area was chosen due to the hot spots of 

Camden already recognized by the city, being one of the many areas that is prone to 

flooding. The localized area that was modeled in SWMM was 0.148 km2, divided into 26 

subcatchments. Once proper information was collected, the modeling of the network was 

done. Measurements of the lengths of the pipes were implemented as well as the maximum 

depths for each junction and each subcatchment drained into its appropriate inlet. Units 

were set to CMS for uniformity. Figure 14 depicts a small portion of Camden’s piping 

network drawn in the SWMM module. 

 

 

 

 

 

 

 

 

 

 

Figure 14. A Portion of Stormwater Sewer System in Camden, New Jersey Modeled 

in SWMM. 
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After all the parameters were implemented, two low impact development (LID) 

controls were then implemented into the program as well. A green roof control and a bio-

swale control were each created. Figures 15 and 16 shows the parameters for each control. 

The units are in millimeters, and the parameters were chosen due to examples through 

literature. 

 

 

 

 

 

 

 

 

 

 

 

 

These controls were applied after simulations were run without green infrastructure 

implementation to see the nature of the area first. Then, the green roof control was added 

to the system to see its effects during a storm. After the simulation was run with the green 

roof control, the bio-swale control was used to see the significance of implementing a bio-

swale in an appropriate area. After both controls were used separately, the entire system 

was analyzed using both LID controls at the same time to show the effects of numerous 

green infrastructure mechanisms. 

 

Figure 15. Green Roof LID Control with Parameters. 
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   Figure 16. Green Roof LID Control with Parameters. 
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Chapter 4 

Results and Discussion 

4.1 Atlantic City 

As mentioned above (Section 3.3.2), an ocean boundary was required for the model 

simulation. Since observed data for the ocean boundary were not available, model 

calibration was done using tide data available at Gage 1.  Random values were inputted 

into the ocean boundary, and then a simulation was run.  Once the data and water level 

presented at Gage 1 (location of Gage 1 shown in Figure 7) matched the observed data at 

Gage 1 from the USGS database, then the linear relationship was successfully formed 

between the two boundaries and an equation could be created for any type of event. A 

regression equation was developed relating the ocean boundary water surface elevation to 

observed water surface elevation at Gage 1. Figure 17 shows this linear relationship, which 

allows the ocean boundary condition to be set to simulate different events, within a 

reasonable range of values for storm surge simulations to simulate the potential impacts of 

flooding. 
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A simulation was run using the April 30, 2014 storm data in the boundary 

conditions to validate that the results being analyzed are accurate.  

 

 

 

  

 

 

 

 

 

 

 

 

Figure 17. Model Calibration Curve. 

Figure 18.  Inside Thorofare at Atlantic City. 
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Another tide gauge within Atlantic City was used for this validation (Inside 

Thorofare at Atlantic City, Lat 39°21’13”, Long 74°27’25”).  The simulation was run and 

the location of the tide gauge was pin pointed within SMS. The results of the simulation 

were compared to the tide data provided by the USGS tidal gauge on April 30, 2014. The 

simulation data and real data seem to be very similar (Figure 18), concluding that the 

calibration curve and simulations are accurately depicting the flooding patterns within the 

study areas in Atlantic City.  

4.1.1 TUFLOW, HAZUS and SLOSH comparison. To exemplify the 

significance of fine-scale modeling compared to current national models, a comparison 

was done. TUFLOW, HAZUS-MH and SLOSH flood models were compared to one 

another. The effects of Hurricane Irene have been studied using HAZUS-MH and SLOSH 

software, depicting the damage and losses due to each return period of a storm and the type 

of Category storm, respectively. Using HAZUS-MH, the representation of flooding for a 

100-year return period is illustrated as shown in Figure 19. This shows that a storm like 

Hurricane Irene, with a 100-year return period, will completely flood the entire city of 

Atlantic City, from its coast to land to the back bay areas. With this, are estimated losses 

as well, which have been predicted in the State of NJ 2014 Hazard Mitigation Plan. 
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Figure 19 illustrates the prediction through previous hurricane and flood 

information programmed into the software. Instead of pinpointing a single area for a certain 

kind of storm, HAZUS only generates a flood model at a large scale. The study area shown 

in Figure 1 is the study area used for the comparison between HAZUS and TUFLOW 

capabilities as well as the rest of the comparisons between all three models. Figure 20 

shows HAZUS and TUFLOW evaluating the same points during Hurricane Irene. 

 

Figure 19. HAZUS 100 Year Return Period Flood Map. 
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Figure 20. Graph of Flood level comparison between TUFLOW and HAZUS of 

Hurricane Irene. 

 

 

 

Figure 20 shows the points analyzed by TUFLOW and HAZUS have over a meter 

in value difference at one point. This graph also shows that HAZUS does not have available 

data for the other two points chosen in Study Area 1. This illustrates that no other 

interpretation can be made except for the fact that having no available data hinders 

accuracy, where TUFLOW has data at every point that flooded. A reason why there is 

discrepancy between the two models is the actual purpose of using fine-scale modeling; 

that HAZUS information is given at a larger scale where TUFLOW has finer 

capabilities.  The different flood depths are not equated to a certain point but a large area 

that covers too many different points to be able to get a specific outcome. TUFLOW 

analyzes data on a point-to-point basis, allowing the flood to simulate a pattern at each 

point, instead of an only a large area.  

Since there were no data available for a couple of the points selected, the second 

study area was compared using HAZUS and TUFLOW. These points are about 5 m apart. 
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As shown in Figure 21, the HAZUS grid is large enough to include three different points 

in the same depth of inundation, whereas TUFLOW allows for a separate depth to be 

apparent.   

 

 

 

 

 

 

 

 

 

Figure 21. Graph of Flood level comparison between TUFLOW and HAZUS of 

Hurricane Irene in Study Area 2. 

 

 

 

A comparison was made with SLOSH and TUFLOW as well. The SLOSH model 

creates inundation maps at a large scale like HAZUS, using the worst-case scenario 

combining the direction of the hurricane, speed, landfall point and high tide. A problem 

with SLOSH is that it does not include riverine flooding caused by hurricane surge or 

inland freshwater flooding. The resulting inundation areas are grouped into Category 1 and 

2 (dangerous), Category 3 (devastating), and Category 4 (catastrophic) classifications. 

FEMA Region IV Risk Analysis Team developed storm surge inundation grids for the 

State and represented the worst-case storm surge scenarios for each category. To assess the 

exposure to the hurricane surge, a spatial analysis was conducted using the SLOSH model.  
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As you can see in Figure 22, Atlantic City seems to be completely inundated with 

little to no variable in depth values along the city, using SLOSH analysis. The grid cell size 

is very large, which covers a great span of land where each parcel has completely different 

flood characteristics.  This coarse model generalizes a large area with having the same 

depth of flooding, when in reality, those different neighborhoods in each cell have fairly 

different values of inundation. 

Figure 23 illustrates SLOSH results of a Category 1 storm, which is a hurricane 

with winds up to 74 mph, with a storm surge about 4-5 feet above normal (Hurricane Irene), 

compared to TUFLOW results for Hurricane Irene’s data at the Atlantic City boundaries. 

 

 

 

Figure 22. SLOSH Category 1 Storm Flood Map. 
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Figure 23. Graph of Flood level comparison using TUFLOW and SLOSH of Hurricane 

Irene. 

 

 

 

These data show comparable results like the HAZUS results. The difference 

between TUFLOW and SLOSH models is the level of estimation and the model only 

generates storm data at a large scale. This graph shows that SLOSH has such a large grid 

size or resolution, that every single point that was analyzed have the same level of 

inundation. This shows, just like HAZUS, that this software generalizes the points, creating 

a false representation of what is actually happening. It seems that SLOSH over estimates, 

using the worst-case scenario statistics. TUFLOW includes a high-resolution grid where 

the entire DEM is taken into account and flooding values are resulted at a finer scale, where 

SLOSH uses such a low-resolution DEM that points are combined. Also, due to SLOSH 

generating a simulation of a general storm, and not a specific one, there are also 

discrepancies between each model’s data. TUFLOW uses specific tide gauge data so the 

values will be different from general models like SLOSH but presumably more accurate.  
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Figure 24. Comparing Flood levels of Hurricane Irene in proposed area using TUFLOW, 

HAZUS and SLOSH. 

 

 

Three different flood models were compared to each other in Study Area 2, 

comparing three of the same points (Figure 24). The results show how SLOSH and HAZUS 

have such limited resources and such a low-resolution grid, that the worst-case scenarios 

presented seem to overestimate more than enough for decent results.  These results can also 

be discussed in reference to a study performed by Katehis (2015) where Superstorm Sandy 

was analyzed and the map clearly shows the places missed on the East shoreline by HAZUS 

that shows flooding using the other models presented. These varied results are due to 

miscalculations of flood surface geometry, resulting in “gaps” in the flood data.  

This determination of gaps is supported in this current study, where gaps within 

HAZUS and SLOSH data are shown (Figure 25). These gaps come to show that it is 

important to have real data and true simulation data to create an accurate prediction of 

storm behavior. Even with such a large grid to predict storm values, depending on 
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topographic data and the default settings within the program, important information still 

may not be conveyed. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. HAZUS and SLOSH Comparison for Hurricane Irene. 

 

 

 

4.1.2 TUFLOW capabilities. 

4.1.2.1 First Analysis. Figure 26 shows a basic simulation for a rainstorm event 

that happened on April 30, 2014. Boundary conditions highlighted in red were set in the 

Absecon Creek, Absecon Channel and Atlantic Ocean using the tide gauge data provided.  
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Figure 26. Hourly TUFLOW Simulation of Flooding in Atlantic City; Blue represents 

lower flood depth where Orange represents a higher flood depth; Red circles represent 

the location of the boundary conditions. 

 

 

As shown, the left picture in Figure 26 depicts the flood level at time 0:00, where 

there is no flooding represented. The middle picture shows flooding within the next hour 

of the storm and the picture on the right illustrates an increase in water level as the storm 

goes on.  The color scheme from Blue to Orange, correlates with depth.  The lowest depth 

is blue and the highest depth is shown as the orange hue. Figure 26 shows an increase in 

flood depth as well as an increase in spatial distribution of water throughout the simulated 

storm.  

Figure 27 shows that same area, more localized and at a finer scale to show the 

details of the simulation. Figure 27 on the left shows the area before the storm event 

occurred. Figure 27 on the right shows the same area during the storm event, showing 

flooding in places that depicted no water before. There is a 1, 2 and 3 placed on the certain 

points of the grid to analyze.  
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Figure 27. Pre-flood Area (left), Post Flood Area (right). 

 

 

 

Three points rather than just one point on the map were chosen to be analyzed due 

to the vast possibilities of flood patterns that can happen within the same vicinity. The three 

points are shown to give a better visual of the possible effects in more than one area at a 

time. Flood depth at each point shown in Figure 27 was very different despite the proximity 

of the locations to each other (Figure 28). The storm event on April 30, 2014 generated the 

tides from the bays and ocean to rise and increase the depth of the water to flood onto land, 

with a maximum depth of 0.647 meters of water on the surface (Figure 28). The three 

different points were at three different elevations of .67 m above sea level, 0.806 and 1.17 

respectively. Where the water is flowing from and how high the elevation is, affects the 

inundation at these points. For example, Point 1 is at a higher elevation than Point 2, but 

had a higher maximum flood depth. Many factors can cause this to happen such as the type 

of land cover before that point, possibly slowing down flow and mitigating flooding 

conditions before it gets to the point being analyzed. When studying the area, Point 2 has 
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taller grasses that can infiltrate more water as well as a dock resisting some water flow to 

that point, whereas Point 1 has low grasses and no structures in the path of water flow. This 

causes Point 1 to have a higher flood depth level than Point 2. Even though the three points 

are very close in proximity, they still hold different characteristics, where flood features 

will be different in each particular position. 

 

 

 

 

Figure 28. Flood Depth of April 30, 2014 Storm. 

 

 

This is important to understand because without such a fine scale model, local 

variation of flood depths at nearby locations would not be able to be determined. National 

models such as HAZUS and SLOSH use a coarse grid, which lump local areas into one 

datum point, assigning them a flood depth of the same value; which is incorrect.  The 

accuracy from fine-scale hydraulic models allows for estimates and predictions at a lot 

scales, which helps community members to understand more precisely the risk of a 
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particular storm.  They would be able to know if the waters of that storm were going to 

encroach on their land or not, and have a better description than other existing models. This 

model gives precise numbers in high resolution so predictions are more clear and accurate. 

These results validate the argument to use fine-scale modeling as a stepping-stone 

towards resiliency planning.  Without such localized models, predictions and estimations 

will not be correct or beneficial for future preparation.   

This area was also analyzed with a levee with rainfall and a levee with no rainfall, 

to examine if creating a levee in the study areas would help mitigate flooding from such 

storm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29 shows a definite decrease in flooding when implementing a levee. Figure 

30 shows a decrease as well, but only a slight decrease with rainfall included.  This is due 

to drainage in the area.  These figures show that a levee will protect from storm surge, and 
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Figure 29. Flood Depth with Levee and No Rainfall. 
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will also work during rain events, but there needs to be a good drainage system set in place 

to be able to get optimum results from the levee.  The levee is essentially blocking the 

rainfall to flow into the ocean, creating a backflow of slight flooding since the drainage for 

rainwater isn’t optimal. These results are important for future planning purposes and when 

deciding which mitigation techniques work best for a community.  

 

 

 

 

 

 

 

 

 

 

4.1.2.2 Second Analysis. Another area was analyzed to show how different areas 

in the same city can have totally different effects. Figure 31 shows the same rainstorm 

event previously illustrated in section 4.1.2.2, but in Study Area 2. 

 

 

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

D
ep

th
, 
m

Time, hrs

Depth of Inundation on Surface Levee and Rainfall

Point 1

Point 2

Point 3

Figure 30. Flood Depth with Levee and Rainfall. 
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Figure 31 shows the same rainfall event, in a different location.  The flooding in 

this location is minimal even without a levee. Figure 32 shows this area with a levee and 

no rainfall, two of the three points receive no inundation at all, and Point 1 has a maximum 

depth of .0168 m. This is a significant decrease from the previous graph of a .053 m 

maximum depth of inundation.  
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Figure 31. Flood Depth of April 30, 2014 Storm. 
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Figure 32. Flood Depth with Levee and No Rainfall. 

 

 

Figure 33 shows this same event, in the same location, but with a levee and rainfall 

inputted into the system.  This drastically increases the flooding in the area, which shows 

that a levee wouldn’t be an appropriate resiliency method for this area of Atlantic City. The 

maximum depth of inundation increased to 0.6008, which means the water is not draining 

due to poor drainage in the area and a blockage from the levee. 
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Figure 33. Flood Depth with Levee and Rainfall. 

 

 

 

4.1.2.3 Third Analysis. Another event (Hurricane Irene) was analyzed in TUFLOW 

that was recorded to be the seventh-costliest hurricane in the United States. It hit the eastern 

shoreline on August 28, 2011. Figure 34 shows the results from the simulation due to 

Hurricane Irene at the previous points analyzed from the standard storm in April 2014 

(Study Area 1). The maximum depth of inundation at these three points was 0.732 meters. 

This graph shows that at a certain point in time, at location Point 1, the water depth was 

0.732 meters on the surface, equivalent to being a little bit higher than knee deep on an 

average person. These results show how damaging Hurricane Irene was, just at one point 

on the surface. With rushing, continuous water on land, the damage of flooding was 

immense with no protection.  
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Figure 34. Flood Depth of Hurricane Irene. 

 

 

 

The results show how effective flood barriers and mitigation techniques are needed 

in these areas prone to flooding, especially during a severe hurricane. Figure 34 illustrates, 

as previously (Figure 31), that even though these three points analyzed are in close 

proximity, about 20 meters from each other, the level of flooding is variable between the 

three points. These results validate the argument to use fine-scale modeling as a stepping-

stone towards resiliency planning.  Without such localized models, predictions and 

estimations will not be correct or beneficial for future preparation.   

Figure 35 illustrates the impact that Hurricane Irene would most likely have had at 

the same locations without rainfall, but with a levee set in place.  As the graph shows, the 

3-meter levee does its intended purpose of minimizing flood in those areas. The maximum 
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depth of water along the three points was at Point 3, with a depth of 0.29 m at Point 1, but 

the rest of the points are at 0.00 m.  The depth of water at those locations dropped 

tremendously, about a half of a meter of water would not have been in that area if protective 

measures were set in place. 

 

 

 

 

Figure 35. Flood Depth of Hurricane Irene with Levee and No Rainfall. 

 

 

 

Figure 35 shows that the levee helps tremendously for a storm surge, blocking a 

significant amount of water from the threatened community.  Figure 36 shows that the 

levee protects the community from a hurricane, decreasing the flooding to 0.45 m rather 

than 0.732 m, but there is still flooding happening because the rainwater is not draining 

properly due to a poor drainage system and the levee is blocking the flow.  
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Figure 36. Flood Depth of Hurricane Irene with Levee and Rainfall. 

 

 

4.1.2.4 Fourth Analysis. To reiterate the importance of such sophisticated 

modeling, Study Area 2 was analyzed for Hurricane Irene as well. This area is highly 

vulnerable due to its low resilient characteristics of little to no infrastructure protection.  

The graph in Figure 37 shows the flooding pattern of three points within the area 

of interest. These points were in proximity of about 5 m apart, to show a different range. 

Even in a different area, these three points still have different flood depths when using the 

fine-scale hydraulic model.  
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Figure 37 shows the flood pattern of three points in Study Area 2. This area has a 

smaller depth of inundation, at a maximum of 0.372 meters. This is due to the higher 

elevation of these points compared to the previous study area points. The complete analysis 

was done, comparing models of just the storm, the storm with a levee but no rainfall, and 

the storm with a levee and rainfall. Figure 38 illustrates this area with a levee but no 

rainfall.   
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Figure 37. Flood Depth of Hurricane Irene, Second Study Area. 
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Figure 38. Flood Depth of Hurricane Irene with Levee, No Rainfall. 

 

 

 

As expected, the levee does a tremendous job decreasing the flood depth from the 

storm surge. The maximum inundation level with the 2m levee put in place is 0.026 meters, 

which almost a half a meter decrease of water. Figure 39 shows the simulation done with 

a levee put in place and rainfall inputted into the system.  
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Figure 39. Flood Depth of Hurricane Irene with Levee and Rainfall. 

 

 Figure 39 shows a large increase in inundation at all three points in the second study 

area, due to the poor drainage of the area.  The levee forces the rainwater to accumulate, 

without letting it drain out. With a proper drainage system, putting a levee in place for 

storm surge protection would be a suggestion in this area, but only if a new drainage system 

could be built or a pump to pump out the excess rainwater, since Figure 38 shows 

tremendous success for the levee against the ocean tide.  

 

4.1.2.5 Fifth Analysis. Due to time constraints and limitations within the capacity 

of the computer, a full analysis using a 1m by 1m grid or less was unachievable.  But, a 

simple analysis to show the refinement of using such a small grid was able to be developed. 

The simulation ran for one week due to the 0.025 time step for the 1 m by 1 m grid because 

otherwise, the simulation would go unstable with a larger time step. Since the grid is so 
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small, the time step needed to be extremely small as well to be able to capture the flow 

through such small cells.  So due to the longevity of the simulation, the time input was only 

4 hours of flow rather than the full 14 hours in the previous studies. 

In addition to the 1 m by 1 m grid simulation, a comparison of the four grids used 

in this study was done. Figure 40 shows the different grid sizes used comparing a 10 m 

grid to the 1 m grid and to the national model grids.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40. Left Top: 10 m by 10 m Grid; Right Top: 1 m by 1 m Grid; Left Bottom: 

SLOSH Grid; Right Bottom: HAZUS Grid. 

 

 

 

 Although a 10m by 10 m grid is very fine, the capabilities of this innovative 

software are very particular.  You can see the difference between a 10 m grid and a 1 m 

grid. This shows how fine the scale can become and how accurate flood predictions are, 
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using fine-scale modeling.  Figures 41 and 42 show the Hurricane Irene simulation in Study 

Area 3, shown in Figure 3, using a 1 m grid versus using a 10 m grid. The reason for a 

slight difference in numbers is due to the higher resolution of grid being used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This shows that the data can get very precise with a finer grid. There is a maximum 

flood depth of 0.88 in Figure 41 and a maximum of 0.76 m in Figure 42.  The difference 

in numbers show the quality of fine-scale modeling software and the significance of such 

a tool. 
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Figure 41. Depth of Inundation using a 1 m by 1 m grid for Study Area 3. 
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4.2 Camden, New Jersey 

4.2.1 TUFLOW. TUFLOW is a dynamic tool that allows for the depiction of flooding at 

a finer scale as well as compared to the other models that cannot withstand the high 

resolution capabilities of such software. Figure 43 shows the hourly TUFLOW simulation 

of flooding in Camden, New Jersey. The blue coloring represents the lowest water depth 

and the red represents the highest, where the colors are a range in between.  
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Figure 42. Depth of Inundation using a 10 m by 10 m grid for Study Area 3. 

 

 

Figure 43 Hourly TUFLOW Simulation of Flooding in Camden, New 

Jersey; Blue represents the lowest water depth where Red represents the 

highest flood depth; the red arrows indicate the locations of the boundary 

conditions Figure 44 Depth of Inundation using a 10 m by 10 m grid for 

Study Area 3 
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Figure 43 shows the flooding pattern of Hurricane Irene on August 28, 2011. The 

boundary conditions pointed out in red were set in the Delaware River near the Port of 

Philadelphia-Tioga as well as downstream near the Adventure Aquarium in Camden, using 

the tide gauge data provided by NOAA.  

Figure 44 shows that same area, more localized and at a finer scale to show the 

details of the simulation. It also shows the area before the storm event occurred and then 

during the storm event, showing flooding in places that depicted no water before. There is 

a 1, 2 and 3 placed on certain points of the grid to identify specific points analyzed in this 

study. 

 

 

 

 

 

 

 

 

 

 

Figure 43. Hourly TUFLOW Simulation of Flooding in Camden, New Jersey; Blue 

represents the lowest water depth where Red represents the highest flood depth; the 

red arrows indicate the locations of the boundary conditions.  

 

Figure 45 Pre- and Post- Flood AreaFigure 46 Hourly TUFLOW Simulation of 

Flooding in Camden, New Jersey; Blue represents the lowest water depth where Red 

represents the highest flood depth; the red arrows indicate the locations of the 

boundary conditions  
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Three points were chosen to be analyzed rather than one due to the vast possibilities 

of flood patterns that can happen within an area of a few meters when using different 

modeling programs. The more information we have about a vast area being flooded, the 

more of an understanding we will have to pose a solution. Figure 45 shows the same points 

on an image with a combined inundation map of HAZUS-MH and SLOSH data.   

 

 

 

 

 

 

 

 

 

 

 

Figure 44. Pre- and Post- Flood Area. 
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Figure 45. Depiction of Analyzed Points on an Inundation Map of 

HAZUS and SLOSH. 

 

Figure 49 TUFLOW, HAZUS and SLOSH comparing flood depths 

at three different locationsFigure 50 Depiction of analyzed points 

on an inundation map of HAZUS and SLOSH 
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Points 1 2 and 3 in Figure 45 were analyzed in SMS, to understand the flooding 

pattern at a finer scale.  This technique was also used to compare TUFLOW resolution to 

HAZUS and SLOSH, which use greater resolution for their data and information. The three 

points analyzed are very close together to show the difference between different scaled 

models. The green shading represents SLOSH data for a Category 1 storm and the purple 

shading represents HAZUS data that correlates to a Category 1 storm, using data for a 100-

year return period. Figure 46 is the graph that compares all three programs, TUFLOW, 

HAZUS and SLOSH. 

HAZUS and SLOSH only generate flood models at a larger scale. Fine- scale 

models allows for the flood to simulate a pattern at each point, where national models only 

allow for a large area at the same flood depth to be calculated.  The information provided 

to HAZUS and SLOSH, as well as their internal capabilities don’t give the programs a fine 

enough grid to work with.  

Figure 46 supports the statement of how fine scale models are needed to represent 

climatic disasters due to the difference in flood depths shown in the figure.  The graph 

shows that TUFLOW and HAZUS are much more comparable than TUFLOW and 

SLOSH, which is sensible because SLOSH resolution is much greater than both HAZUS 

and TUFLOW.  The concentration on these findings show that TUFLOW goes further into 

precision than HAZUS does using a smaller grid, where each point has a different flood 

depth rather than each certain square meter.  
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4.2.2 Storm Water Management Model 5.1. Storm Water Management Model (SWMM) 

is used worldwide for planning, analyzing and designing the pattern of water through a 

stormwater system.  

The focus for this part of the research was to ensure green infrastructure 

capabilities.  The first approach and emphasis was on the building scale, to see effects of a 

green roof on a building before and after its implementation. A subcatchment with a 100% 

impervious area of 0.05 ha (500 m2) was chosen. The simulation was run with no LID 

controls first. The results showed a peak runoff rate for the specified subcatchment to be 

0.05 CMS.  Then, a green roof LID control was set in place for that same subcatchment. 

The green roof occupied the entire subcatchment and after implementation of a green roof, 

Figure 46. TUFLOW, HAZUS and SLOSH Comparison at Three Different Locations. 

 

Figure 51 Subcatchment location and Graph of No Green roof versus Green roof 
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the peak runoff decreased to 0.01 CMS. This shows an 80% reduction of peak runoff, which 

is illustrated in Figure 47. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The simulation was continued with implementation of a bio-swale. Before the bio-

swale was implemented, the peak runoff rate was 0.05 CMS for a different area of the same 

measurement of 0.05 ha (500 m2). After the bio-swale was implemented, the peak runoff 

rate was 0.00 CMS, producing a 100% reduction in peak runoff for that specific area. 

Figure 48 shows the graph of the reduction in peak runoff.  
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Figure 47. Subcatchment Location and Graph of No Green roof versus Green roof. 

 

Figure 53 Subcatchment location and Graph of No Bio-swale versus Bio-swale 

implementation 

Figure 54 Subcatchment location and Graph of No Green roof versus Green roof 

implementation 
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This area drains into an outlet, sometimes causing flooding problems if there is 

overflow. The total inflow to the outlet was analyzed as well to assure that there would be 

a decrease. Before implementation of the bio-swale, the total flow into the outlet was 1.37 

CMS. After implementation of the bio-swale, the total flow into the outlet decreased to 

1.35 CMS, a 1.46% reduction of inflow to the subcatchment outlet. The percentage 

decrease is not large but still illustrates how green infrastructure can impact many types of 

mechanisms within a system. 

The entire system was then analyzed, to get an overall essence of how green 

infrastructure works at a greater scale. Figure 49 shows the comparison between the runoff 

of the whole system before green infrastructure and the runoff from the system using two 

types of green infrastructure, one 1000m2 bio-swale and one 500m2 green roof. Green 

infrastructure implementation resulted in a 3.21% reduction in peak runoff for the system. 
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Figure 48. Subcatchment Location and Graph of No Bio-swale versus Bio-swale.  

 

 

Figure 55 System Runoff Comparison between no green infrastructure and with 

green infrastructureFigure 56 Subcatchment location and Graph of No Bio-swale 

versus Bio-swale implementation 

 



www.manaraa.com

79 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Another scenario was modeled for the system, where a 2500m2 bio-swale and a 

500m2 green roof were implemented into the system. This resulted in a 5.95% decrease of 

peak system runoff, concluding that the more GI within the system, the less runoff there 

will be, decreasing the amount of flooding in the streets of Camden. This result is shown 

in Figure 50.  
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Figure 49. System Runoff Comparison between No Green Infrastructure 

and with Green Infrastructure. 

 

 

Figure 57 System Runoff Comparison between no green infrastructure 

and with larger green infrastructureFigure 58 System Runoff 

Comparison between no green infrastructure and with green 

infrastructure 

 

Figure 50. System Runoff Comparison between No Green Infrastructure 

and with Larger Green Infrastructure. 
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Chapter 5 

Summary, Conclusion and Recommendations 

5.1 Summary 

The information in this study illustrates how the increase in storm events, sea level 

rise and storm surges are of high concern in the subjected areas and more than just current 

models are needed for prevention and planning.  

When comparing and combining TUFLOW, HAZUS, and SLOSH models, we can 

get a large scale representation of hurricane and flooding impacts, as well as a finer scale 

representation of what is happening.  TUFLOW allows the implementation of real time 

data into boundaries and depicts what happens when the tide levels increase. HAZUS and 

SLOSH are able to predict damages and losses related to a type of storm but just using 

national models with a coarse resolution will not help a community become resilient to 

climatic hazards. It is important to use high-resolution modeling and data for climatic 

predictions and resilience. It is crucial to create fine-scale models before implementation 

of any stormwater management system in a community for cost and safety reasons.  When 

damage is under-predicted, the impacts of the storm event are devastating as well as if the 

damage is over-predicted; the community wastes an immense amount of money on 

unnecessary materials. The differences between TUFLOW, HAZUS and SLOSH are the 

resolution and estimation of the flood level. As shown in Figure 24, due to the low 

resolution of HAZUS and SLOSH, there are designated large areas with the same values 

of water level, which is not accurate. These coarser models tend to overestimate the storm 

and do not allow communities to completely understand the forecast of the storm 
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happening in their area. TUFLOW allows high-resolution data to designate fine areas with 

a certain value, giving a more accurate representation of the storm predicted in coastal 

communities. The need for high-resolution analysis is crucial when considering flood 

impact on threatened communities. 

The results show how SLOSH and HAZUS are based on such large grid sizes that 

there are inconsistencies with these model outputs. The large grid of these national models 

allows for gaps as well as a broad estimation for different points on the surface to receive 

the same amount of inundation, which is very inaccurate. These results can also be 

discussed in reference to a study performed by Katehis (2015), who analyzed flood levels 

from Superstorm Sandy using three different methods; HAZUS Coastal Surge Model 

(CSM), SLOSH and the FEMA MOTF (real data) model in the five boroughs of New York 

City.. When comparing the map of HAZUS and SLOSH as well as HAZUS and HSIA, the 

map clearly showed the places missed on the Eastern shoreline by HAZUS, where other 

models show that there was flooding in that area.  In this case HAZUS predictions were 

faulty for not showing inundation in areas that were flooded from the storm, while flooding 

was indicated for the other models. Katehis (2015) attributed these varied results to 

miscalculations of flood surface geometry, resulting in “gaps” in the flood data.  Other 

differences such as how HAZUS uses 2000 TIGER data (FEMA 2012a) for its counties 

while HSIA used default ArcGIS basemaps and grid cell measurements are also factors. 

It is likely that a similar explanation can be made for gaps in Atlantic City and 

Camden from HAZUS and SLOSH data for Hurricane Irene inundation predictions. The 

presence of these data gaps show that it is important to have high resolution elevation data 

and observed data for use with simulations, i.e. tide gauge data and historical precipitation 
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data to create a more accurate prediction of storm flooding. Even with such a large grid to 

predict storm values, depending on topographic data and the default settings within the 

program, important information still may not be conveyed. 

Green infrastructure is the second part of this research. Green infrastructure 

nourishes cities environmentally and increases its resiliency to climatic disasters as well. It 

is used all over the globe because it is very important to maintain effectiveness and 

efficiency within such an urban city. In highly developed urban regions such as Camden, 

NJ, low lying areas within the city fill up due to an abundance of impervious materials used 

for city structure, when those spots normally would be able to drain naturally. Due to this 

fill up, any stormwater and runoff gets directed into storm and sewer systems, overflowing 

and mixing raw sewage with clean water. This contaminated water lies all over the parking 

lots, sidewalks and driveways, eventually making its way to streams and 

oceans.  Implementing rain gardens and bio-swales is a simpler and cheaper solution to 

help mitigate flooding. It’s a technique that the city has already implemented within their 

Camden Smart Program which can expand to applying green roofs and bio-swales into 

their projects as well. 

5.2 Conclusion 

Community members need accurate and reliable models for a foundation of their 

understanding or the community will not be readily prepared for a climatic hazard.  The 

need for fine-scale modeling before coastal resiliency tactics are implemented in threatened 

coastal communities like Atlantic City is apparent as national and regional coarse scale 

models can lead to inaccurate information for design and lack of consistency.  With climate 

change, the frequency of storms is increasing, and resiliency methods against such 
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threatening climatic events are crucial for coastal communities. Results indicate that, using 

fine scale modeling, the catastrophic flood risk will be known more accurately, and 

potential solutions will be able to be presented quicker and more correctly, than with a 

coarse-scale estimation using the current national models. More accurate predictions allow 

the community to prepare more cost effective solutions. Awareness is crucial part in 

resiliency planning and without explicit advanced modeling and research, no community 

will be responsive to the dangers ahead. 

The study provided illustrates how storm events are of high concern in the subjected 

area presented, and the great flooding potential within Atlantic City and Camden City. This 

research promotes the need for dual resiliency tactics such as fine-scale modeling and green 

infrastructure to be implemented in threatened communities. With fine-scale modeling, 

flooding is able to be tracked at a much finer scale and the modeling capability allows for 

greater resiliency for the community. 

Green infrastructure implementation is cost effective, environmentally friendly and 

fairly easy to implement. The usefulness of green infrastructure is endless, from filtering 

out contaminants to storing water and infiltrating it through the ground. They mimic natural 

drainage systems by using such materials as roots of the plants and layers of gravel, soil 

and mulch to filter the water seeping into the ground. Figures in 47-50 show the benefits 

of implementing green infrastructure into urban regions. Figure 47 shows an 80% decrease 

in runoff by implementing a green roof, and even better results by using a bio-swale for a 

100% decrease in runoff. System runoff is a much smaller decrease, but at such a large 

scale there are many more components such as impervious area that affect the outcome. 

The evidence is supportive to the fact that green infrastructure will help urban cities with 
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the climatic threats of climate change and sea level rise and the use of fine scale modeling 

combined will create a great mitigation technique to reduce flooding and its negative 

impacts. 

5.3 Limitations and Recommendations 

Due to the RAM capacity of the computer that was being used for the first year and 

a half of this study, certain amount of data were unable to be imported into the model 

interface. Bathymetry data that was used to help calculate flow data were input at a 

minimum because the capacity of the computer could not handle the large amount of 

bathymetry data. Another problem due to the capability of the computer used was that the 

program kept crashing and shutting down, so time was a constraint in this study. A third 

issue with the computer’s minimal capacity created a problem when generating the grid for 

the model. The capability of the model that was run is high functioning and very fine.  The 

computer’s capacity was unable to handle the advanced modeling proficiencies, until 

further investigation was performed later and due to timing constraints, multiple data that 

were encouraged were not able to be obtained. Even with such constraints, this paper still 

exemplifies the objectives and goals of the study performed properly and sufficiently. 

There are a few recommendations that can be made for this research project, as well 

as future work considerations. A high functioning, super computer needs to be used for 

modeling purposes and this type of research since the program kept crashing and time 

started to become an issue. Another recommendation for this research is to solely run the 

model using a 1m by 1m grid as well as even a finer grid, to get the most precise results 

possible. 



www.manaraa.com

85 
 

 Future work involves developing a framework for resiliency planning in the face of 

extreme storm events.  This includes building an interactive map online for users to be able 

to understand the problem of flooding and sea level rise, and then be able to choose the 

best mitigation technique on a legend for the area they are located in. The goal is to have 

this interactive map completed for the whole coast, as well as inland areas and eventually 

the whole country, for areas that are threatened by flooding. Using fine-scale models and 

interactive maps will help the communication barrier between community members and 

professionals about this climatic problem and increase coastal community resiliency in the 

near future.  
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